-
Présentation du cours
-
Présentation du machine learning
-
Apprentissage supervisé: régression linéaire
-
Travaux dirigés 1
-
Sur-apprentissage et régularisation
-
- Rejoindre ce cours pour accéder aux ressources
-
-
Travaux dirigés 2
-
Sélection de modèle et évaluation
-
- Rejoindre ce cours pour accéder aux ressources
-
Optimisation d’hyperparamètres
-
Travaux dirigés 3
-
- Rejoindre ce cours pour accéder aux ressources
-
-
Apprentissage supervisé: classification
-
- Rejoindre ce cours pour accéder aux ressources
-
Travaux dirigés 4
-
Réduction de dimension
-
- Rejoindre ce cours pour accéder aux ressources
-
Apprentissage supervisé: méthodes à noyaux
-
- Rejoindre ce cours pour accéder aux ressources
-
-
Travaux dirigés 5
-
Apprentissage non-supervisé: clustering
-
Travaux dirigés 6
-
Projet guidé
-
- Rejoindre ce cours pour accéder aux ressources
-
- Rejoindre ce cours pour accéder aux ressources
-
-
Projets non-guidés
1 - Preparation et Exploration de données
Vous allez appliquer différentes techniques d'exploration, de nettoyage et de visualisation des données. Il est très important de prendre le temps de comprendre les données.
Veuillez cliquer sur le lien ci-dessous pour accéder à l'introduction sur la préparation des données:
Les commentaires ne sont pas activés sur ce cours.
Ressources supplémentaires
Rejoindre ce cours pour accéder aux ressources