Machine learning
Completed
-
Présentation du cours
-
Présentation du machine learning
-
Apprentissage supervisé: régression linéaire
-
Travaux dirigés 1
-
Sur-apprentissage et régularisation
-
- Rejoindre ce cours pour accéder aux ressources
-
-
Travaux dirigés 2
-
Sélection de modèle et évaluation
-
- Rejoindre ce cours pour accéder aux ressources
-
Optimisation d’hyperparamètres
-
Travaux dirigés 3
-
- Rejoindre ce cours pour accéder aux ressources
-
-
Apprentissage supervisé: classification
-
- Rejoindre ce cours pour accéder aux ressources
-
Travaux dirigés 4
-
Réduction de dimension
-
- Rejoindre ce cours pour accéder aux ressources
-
Apprentissage supervisé: méthodes à noyaux
-
- Rejoindre ce cours pour accéder aux ressources
-
-
Travaux dirigés 5
-
Apprentissage non-supervisé: clustering
-
Travaux dirigés 6
-
Projet guidé
-
- Rejoindre ce cours pour accéder aux ressources
-
- Rejoindre ce cours pour accéder aux ressources
-
-
Projets non-guidés
Modélisation paramétrique
On parle de modèle paramétrique quand on utilise un algorithme d’apprentissage dont le but est de trouver les valeurs optimales des paramètres d’un modèle défini par une expression analytique, fonction des descripteurs. La complexité d’un modèle paramétrique grandit avec le nombre de paramètres à apprendre, autrement dit avec le nombre de variables. À l’inverse, la complexité d’un modèle non paramétrique aura tendance à grandir avec le nombre d’observations.
La régression linéaire fait partie de la famille des régressions paramétriques qui supposent que la forme analytique de la fonction de décision est connue. Les modèles linéaires ont une longue histoire dans le domaine des statistiques. Malgré leur simplicité, ils peuvent avoir de bonnes performances, meilleures parfois que celles de modèles non linéaires plus populaires (surtout dans le cas où la taille du jeu d’entraînement est faible). De plus, ces modèles sont facilement interprétables.
Leur compréhension est une excellente base sur laquelle construire des modèles non linéaires.
Les commentaires ne sont pas activés sur ce cours.